Дайте определение понятию алгоритм. Правила построения алгоритма

– система правил, сформулированная на понятном исполнителю языке, которая определяет процесс перехода от допустимых исходных данных к некоторому результату и обладает свойствами массовости, конечности, определенности, детерминированности.

Слово «алгоритм» происходит от имени великого среднеазиатского ученого 8–9 вв. Аль-Хорезми (Хорезм – историческая область на территории современного Узбекистана). Из математических работ Аль-Хорезми до нас дошли только две – алгебраическая (от названия этой книги родилось слово алгебра) и арифметическая. Вторая книга долгое время считалась потерянной, но в 1857 в библиотеке Кембриджского университета был найден ее перевод на латинский язык. В ней описаны четыре правила арифметических действий, практически те же, что используются и сейчас. Первые строки этой книги были переведены так: «Сказал Алгоритми. Воздадим должную хвалу Богу, нашему вождю и защитнику». Так имя Аль-Хорезми перешло в Алгоритми, откуда и появилось слово алгоритм. Термин алгоритм употреблялся для обозначения четырех арифметических операций, именно в таком значении он и вошел в некоторые европейские языки. Например, в авторитетном словаре английского языка Webster"s New World Dictionary , изданном в 1957, слово алгоритм снабжено пометкой «устаревшее» и объясняется как выполнение арифметических действий с помощью арабских цифр.

Слово «алгоритм» вновь стало употребительным с появлением электронных вычислительных машин для обозначения совокупности действий, составляющих некоторый процесс. Здесь подразумевается не только процесс решения некоторой математической задачи, но и кулинарный рецепт и инструкция по использованию стиральной машины, и многие другие последовательные правила, не имеющие отношения к математике, – все эти правила являются алгоритмами. Слово «алгоритм» в наши дни известно каждому, оно настолько уверенно шагнуло в разговорную речь, что сейчас нередко на страницах газет, в выступлениях политиков встречаются выражения «алгоритм поведения», «алгоритм успеха» и т.д.

Тьюринг А. Может ли машина мыслить ? М., Мир, 1960
Успенский В. Машина Поста. Наука, 1988
Кормен Т., Лейзерсон, Ривес Р. Алгоритмы. Построение и анализ . М., МЦНМО, 1999

Найти "АЛГОРИТМ " на

Понятность - алгоритм должен состоять из команд, "понятных" исполнителю (входящих в систему команд исполнителя).

Дискpетность (прерывность, раздельность) - алгоpитм должен пpедставлять пpоцесс pешения задачи как последовательное выполнение пpостых (или pанее опpеделенных) шагов.

Опpеделенность - т.е. каждое пpавило алгоpитма должно быть четким, однозначным и не оставлять места для пpоизвола. Благодаpя этому свойству выполнение алгоpитма носит формальный хаpактеp и не тpебует никаких дополнительных указаний или сведений о pешаемой задаче.

Pезультативность (или конечность)- алгоpитм должен пpиводить к pешению задачи (или к ответу, что решения нет) за конечное число шагов.

Массовость - алгоpитм pешения задачи pазpабатывается в общем виде, т.е. он должен быть пpименим для некотоpого класса задач, pазличающихся лишь исходными данными. Пpи этом исходные данные могут выбиpаться из некотоpой области, котоpая называется областью пpименимости алгоpитма.

Главная особенность любого алгоритма - формальное исполнение, позволяющее выполнять заданные действия (команды) не только человеку, но и техническим устройствам (исполнителям). Таким образом, исполнителями алгоритмов могут быть, например, человек, компьютер, принтер, робот-манипулятор, станок с числовым программным управлением, живая клетка, дрессированное животное, компьютерная программа, компьютерный вирус, "черепашка" в Логорайтере или Логомирах (геометрический исполнитель) и т.д.

Исполнитель алгоритма - это устройство управления, соединенное с набором инструментов. Устройство управления понимает алгоритмы и организует их выполнение, командуя соответствующими инструментами. А инструменты производят действия, выполняя команды управляющего устройства. Прежде чем составлять алгоритм решения задачи, надо узнать, какие действия предполагаемый исполнитель может выполнить.

Эти действия называются допустимыми действиями исполнителя. Только их и можно использовать.

Исполнитель вычислительных алгоритмов называется вычислителем. Вычислитель может иметь дело с числами и переменными, обозначающими числа. Таким образом, алгоритм - это организованная последовательность действий, допустимых для некоторого исполнителя. Один и тот же исполнитель может быть сымитирован на ЭВМ многими способами.

Сложность алгоритма

Сложность алгоритма позволяет оценить, насколько быстро растет трудоёмкость алгоритма с увеличением объема входных данных. Под трудоемкостью понимается количество элементарных операций, которые необходимо выполнить для решения задачи с помощью данного алгоритма. Обычно оценка сложности алгоритма представляется в виде O(f(N)), где O – функция сложности, а N – число обрабатываемых наблюдений или примеров. Наименее затратными являются алгоритмы, для которых функция сложности имеет вид f(N)=C и f(N)=C*N, где С – константа. В первом случае вычислительные затраты не зависят от количества обрабатываемых данных, а во втором случае – линейно возрастают. Самыми затратными являются алгоритмы, сложность которых имеет степенную и факториальную зависимости от числа обрабатываемых наблюдений.



СОРТИРОВКА

Сортировка представляет собой процесс упорядочения множества подобных информационных объектов в порядке возрастания или убывания их значений. Например, список i из n элементов будет отсортирован в порядке возрастания значений элементов, если i <= i <= ... <= i.

Имеется два вида алгоритмов сортировки: сортировка массивов, которые могут находиться как в операционной памяти, так и на диске в виде файла прямого доступа, и сортировка последовательных файлов, находящихся на дисках или магнитных лентах.

Основное отличие между сортировкой массивов и сортировкой последовательных файлов заключается в том, что каждый элемент массива является доступным в любое время. Это значит, что в любое время любой элемент массива может сравниваться с любым другим элементом массива и любые два элемента массива могут обмениваться местами. Напротив, в последовательном файле в каждый момент времени доступен лишь один элемент. Из-за этих отличий методы сортировки существенно отличаются для этих двух видов сортировки.

В общем случае при сортировке данных только часть информации используется в качестве ключа сортировки, который используется в сравнениях. Когда выполняется обмен, передается вся структура данных.

МЕТОДЫ ПОИСКА

Поиск информации в неотсортированном массиве требует проведения последовательного просмотра массива. Просмотр начинается с первого элемента и завершается либо найденным элементом, либо достижением конца массива. Этот метод должен использоваться для неотсортированных данных, но он также может использоваться для отсортированных данных. Если данные отсортированы, то может использоваться двоичный поиск, который выполняется значительно быстрее.

Алгори́тм - это точный набор инструкций, описывающих порядок действий некоторого исполнителя для достижения результата, решения некоторой задачи за конечное время.

Общие определения

Единого «истинного» определения понятия «алгоритм» нет. Наиболее известные варианты определения опираются на интуитивное понятие «задачи»:

  • Алгоритм - это конечный набор правил, который определяет последовательность операций для решения конкретного множества задач и обладает пятью важными чертами: конечность, определённость, ввод, вывод, эффективность (Д. Э. Кнут ).
  • Алгоритм - это всякая система вычислений, выполняемых по строго определённым правилам, которая после какого-либо числа шагов заведомо приводит к решению поставленной задачи (А. Н. Колмогоров ).
  • Алгоритм - это последовательность действий, либо приводящяя к решению задачи, либо поясняющая, почему это решение получить нельзя.

Формальные признаки алгоритмов

  • Детерминированность : в каждый момент времени следующий шаг работы однозначно определяется состоянием исполнителя. Алгоритм выдаёт один и тот же результат (ответ) для одних и тех же исходных данных.
  • Понятность : алгоритм должен включать только команды из заранее оговоренной системы команд исполнителя.
  • Завершаемость (конечность): при корректно заданных исходных данных алгоритм должен завершать работу и выдавать результат за конечное число шагов.
  • Массовость : алгоритм должен быть применим к разным наборам исходных данных.

Алгоритмы анализа данных

В анализе данных под алгоритмом понимается функция, преобразующая входные данные в выходные данные , эффективно вычислимая на компьютере за конечное время, точнее, за приемлемо малое для данной задачи время.

В машинном обучении понятие алгоритм может употреблять в трёх смыслах.

Литература

  1. Рудаков, К. В. Алгебраическая теория универсальных и локальных ограничений для алгоритмов распознавания : Дис. док. физ.-мат. наук: 05-13-17. - Вычислительный центр АН СССР, 1992. - 274 с. (

Сегодня мы дадим ответ на вопрос о том, что такое алгоритм.

Зачастую алгоритмом принято называть набор инструкций, которые описывают необходимые действия (а также порядок их выполнения) с целью решения поставленной задачи. В наше время алгоритмы используются не только в инженерном деле и в науке, но и в других сферах жизни.

Что называется алгоритмом

Понятие алгоритма является довольно древним и относится к одному из главных, а также базовых понятий в математике. Термин происходит от латинского написания имени известного восточного математика 787-850 годов Мухаммеда аль-Хорезми - Algorithmi. Этот ученный был первым, кто сформулировал точные правила для записи натуральных чисел, а также правила для подведения отсчётов в столбик. Довольно интересным фактом является и то, что, несмотря на древние корни, само понятие было точно сформулировано лишь в начале ХХ века. Ныне алгоритм является основной составляющей современного бизнеса, любого учебного процесса или же исследования. Именно поэтому каждому современному человеку просто необходимо точно знать, что означает алгоритм.

Алгоритм – зачастую точные сформулированные указания, порядок определенных действий, которые должны обеспечить достижение поставленной цели.

Что такое свойства алгоритмов

Но стоит помнить, что не каждую последовательность действий можно назвать алгоритмом. Последовательность является алгоритмом, только если она обладает определенными свойствами. Перечислим их:

  1. Одним из важнейших свойств является дискретность. Ее мы рассмотрим чуточку ниже.
  2. Не менее важной является определенность. Согласно данному свойству каждая команда должна быть однозначной и наводить исполнителя на конкретное действие.
  3. Стоит помнить и о понятности алгоритма. В алгоритме должны использоваться только необходимые команды, которые относятся к поставленной задаче.
  4. Важным свойством является и результативность (также часто называют конечностью) алгоритма. Свойство «результативность» указывает на то, что в алгоритме имеется определенное, ранее указанное число шагов, выполнение которых приведет к выполнению поставленной задачи.
  5. Также любой алгоритм должен обязательно обладать и таким свойством, как массовость. Если алгоритм обеспечивает выполнение всех задач определенного типа, то он обладает свойством массовости.

Что такое алгоритм в информатике

Все ученные сходится в утверждении о том, что понятие алгоритма является фундаментальным в современной информатике. При создании программного обеспечения первым пунктом всегда стоит создание алгоритма.

Алгоритм, записанный на формальном языке, принято называть программой. Очень часто понятие алгоритма тесно связывается с процессом его записи в программу. Именно поэтому термин алгоритма и программы зачастую считают синонимами

Как создать алгоритм

Для того, чтобы создать эффективный и качественный алгоритм, следует соблюдать несколько правил:

  1. Алгоритм обязательно должен писаться на формальном и ясном языке. Неоднозначность или же неясность указаний недопустима.
  2. При составлении алгоритма нужно обязательно учесть и то, для кого он составляется. Исполнитель должен понимать все пункты алгоритма и иметь возможность претворить их в жизнь.
  3. Желательно делать алгоритм кратким, точным и ясным.

Что такое линейный алгоритм

Среди всех алгоритмов различают линейные и нелинейные. Алгоритм считается линейным, если в нем соблюдается постоянный порядок действий на протяжении всего процесса выполнения.

В информатике язык программирования, с помощью которого описывается алгоритм, принято называть оператором. Выделяют простые и структурные операторы. Простые операторы описывают только одно действие.

Именно простые операторы наиболее часто используются в линейных алгоритмах.

Свойство дискретности алгоритма и ее значение

Ранее мы упоминали, что любой алгоритм обладает таким свойством, как дискретность. Теперь давайте рассмотрим понятие дискретности более подробно.

Часто дискретность заменяют таким термином, как прерывность и раздельность алгоритма. По сути все три термина обозначают одно и то же, а именно – последовательное (поочередное) выполнение всех команд алгоритма. При соблюдении дискретности каждое действие выполняется только после завершения предыдущего, а выполнение всех поставленных пунктов приводит к ранее указанному конечному результату (к полному решению задачи).

Теперь мы рассмотрели основные термины и понятия, которые относятся к нашей сегодняшней теме. Наверняка для вас теперь не проблема ответить на вопрос о том, что является алгоритмом. Полученные знания еще не раз пригодятся как в вашей профессиональной сфере, так и в повседневной жизни. Уточнить детали или же найти ответ на возникший вопрос вы как всегда можете с помощью удобной системы комментариев ниже.

Единого «истинного» определения понятия «алгоритм» нет.

«Алгоритм - это конечный набор правил, который определяет последовательность операций для решения конкретного множества задач и обладает пятью важными чертами: конечность, определённость, ввод, вывод, эффективность». (Д. Э. Кнут)

«Алгоритм - это всякая система вычислений, выполняемых по строго определённым правилам, которая после какого-либо числа шагов заведомо приводит к решению поставленной задачи». (А. Колмогоров)

«Алгоритм - это точное предписание, определяющее вычислительный процесс, идущий от варьируемых исходных данных к искомому результату». (А. Марков)

«Алгоритм - точное предписание о выполнении в определённом порядке некоторой системы операций, ведущих к решению всех задач данного типа». (Философский словарь / Под ред. М. М. Розенталя)

«Алгоритм - строго детерминированная последовательность действий, описывающая процесс преобразования объекта из начального состояния в конечное, записанная с помощью понятных исполнителю команд». (Николай Дмитриевич Угринович, учебник «Информатика и информ. технологии»)

«Алгоритм - это последовательность действий, направленных на получение определённого результата за конечное число шагов».

«Алгоритм - однозначно, доступно и кратко (условные понятия - названия этапа) описанная последовательность процедур для воспроизводства процесса с обусловленным задачей алгоритма результатом при заданных начальных условиях. Универсальность (или специализация) алгоритма определяется применимостью и надёжностью данного алгоритма для решения нестандартных задач».

«Алгоритм - это понятные и точные предписания исполнителю совершить конечное число шагов, направленных на решение поставленной задачи».

«Алгоритм - это некоторый конечный набор рассчитанных на определённого исполнителя операций в результате выполнения которых через определённое число шагов может быть достигнута поставленная цель или решена задача определённого типа».

«Алгоритм - это последовательность действий, либо приводящая к решению задачи, либо поясняющая почему это решение получить нельзя».

«Алгоритм - это точная, однозначная, конечная последовательность действий, которую должен выполнить пользователь для достижения конкретной цели либо для решения конкретной задачи или группы задач».

«Алгоритм - это точное предписание, которое задаёт вычислительный (алгоритмический) процесс, начинающийся с произвольного исходного данного и направленный на получение полностью определяемым этим исходным данным результата».

Свойства алгоритма

Различные определения алгоритма в явной или неявной форме содержат следующий ряд общих требований:

  1. Дискретность - алгоритм должен представлять процесс решения задачи как последовательное выполнение некоторых простых шагов. При этом для выполнения каждого шага алгоритма требуется конечный отрезок времени, то есть преобразование исходных данных в результат осуществляется во времени дискретно.
  2. Детерминированность - определённость. В каждый момент времени следующий шаг работы однозначно определяется состоянием системы. Таким образом, алгоритм выдаёт один и тот же результат (ответ) для одних и тех же исходных данных. В современной трактовке у разных реализаций одного и того же алгоритма должен быть изоморфный граф. С другой стороны, существуют вероятностные алгоритмы, в которых следующий шаг работы зависит от текущего состояния системы и генерируемого случайного числа. Однако при включении метода генерации случайных чисел в список «исходных данных», вероятностный алгоритм становится подвидом обычного.
  3. Понятность - алгоритм для исполнителя должен включать только те команды, которые ему (исполнителю) доступны, которые входят в его систему команд.
  4. Конечность - при корректно заданных исходных данных алгоритм должен завершать работу и выдавать результат за конечное число шагов. С другой стороны, вероятностный алгоритм может и никогда не выдать результат, но вероятность этого равна 0.
  5. Массовость - алгоритм должен быть применим к разным наборам исходных данных.
  6. Результативность - завершение алгоритма определёнными результатами.
  7. Алгоритм содержит ошибки, если приводит к получению неправильных результатов либо не даёт результатов вовсе.
  8. Алгоритм не содержит ошибок, если он даёт правильные результаты для любых допустимых исходных данных

Виды алгоритмов

Основные виды алгоритмов:

1)Прикладные алгоритмы - предназначены для решения определённых прикладных задач.

Алгоритм считается правильным, если он отвечает требованиям задачи (например, даёт физически правдоподобный результат. Алгоритм (программа) содержит ошибки, если для некоторых исходных данных он даёт неправильные результаты, сбои, отказы или не даёт никаких результатов вообще.

2)Рекурсивные алгоритмы - алгоритмы, вызывающие сами себя до тех пор, пока не будет достигнуто некоторое условие возвращения.

3)Начиная с конца XX - начала XXI века активно разрабатываются параллельные алгоритмы - предназначены для вычислительных машин, способных выполнять несколько операций одновременно.

Способы описания алгоритмов

Алгоритм может быть записан словами и изображён схематически. Обычно сначала (на уровне идеи) алгоритм описывается словами, но по мере приближения к реализации он обретает всё более формальные очертания и формулировку на языке, понятном исполнителю (например, машинный код). Например, для описания алгоритма применяются блок-схемы. Другим вариантом описания, не зависимым от языка программирования, является псевдокод.

Литература

  1. Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. - 2-е изд. - М.: «Вильямс», 2006. - С. 1296.
  2. Дональд Кнут Искусство программирования, том 1. Основные алгоритмы = The Art of Computer Programming, vol.1. Fundamental Algorithms. - 3-е изд. - М.: «Вильямс», 2006. - С. 720.
  3. Порублев Илья Николаевич, Ставровский Андрей Борисович Алгоритмы и программы. Решение олимпиадных задач. - М.: «Вильямс», 2007. - С. 480.